Application of Empirical Mode Decomposition (EMD) for Automated Detection of epilepsy using EEG signals

نویسندگان

  • Roshan Joy Martis
  • U. Rajendra Acharya
  • Jen-Hong Tan
  • Andrea Petznick
  • Ratna Yanti
  • Chua Kuang Chua
  • E. Y. K. Ng
  • Louis Tong
چکیده

Epilepsy is a global disease with considerable incidence due to recurrent unprovoked seizures. These seizures can be noninvasively diagnosed using electroencephalogram (EEG), a measure of neuronal electrical activity in brain recorded along scalp. EEG is highly nonlinear, nonstationary and non-Gaussian in nature. Nonlinear adaptive models such as empirical mode decomposition (EMD) provide intuitive understanding of information present in these signals. In this study a novel methodology is proposed to automatically classify EEG of normal, inter-ictal and ictal subjects using EMD decomposition. EEG decomposition using EMD yields few intrinsic mode functions (IMF), which are amplitude and frequency modulated (AM and FM) waves. Hilbert transform of these IMF provides AM and FM frequencies. Features such as spectral peaks, spectral entropy and spectral energy in each IMF are extracted and fed to decision tree classifier for automated diagnosis. In this work, we have compared the performance of classification using two types of decision trees (i) classification and regression tree (CART) and (ii) C4.5. We have obtained the highest average accuracy of 95.33%, average sensitivity of 98%, and average specificity of 97% using C4.5 decision tree classifier. The developed methodology is ready for clinical validation on large databases and can be deployed for mass screening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

Empirical Mode Decomposition based Feature Extraction Method for the Classification of EEG Signal

Disease identification is a major task in the field of biomedical. To perform it the analysis of EEG signal is to be performed. The proposed method presents for feature extraction from electroencephalogram (EEG) signals using empirical mode decomposition (EMD). Its use is motivated by the fact that the EMD gives an effective time-frequency analysis of nonstationary signals. The intrinsic mode f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of neural systems

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2012